• How Machine Learning and Hyperspectral Imaging Contribute to Sustainable Agriculture and Environmental Protection

    Sustainable agriculture is a simple and pragmatic idea that there does not have to be a trade-off between agricultural productivity and environmental protection. The conventional approach, however, has been to view agricultural yields and environmental protection as some sort of a zero-sum game in which the latter was constantly out-prioritised by the former. As a result, we have only managed to exacerbate the already adverse environmental impact of agriculture in terms of groundwater depletion, water pollution from fertilizer runoffs, biodiversity loss, soil erosion, and high rates of greenhouse gas emissions.
    We now face the crying need to increase food production by 70 percent to ensure the food security for a global population of over 9 billion by 2050. Reverting to conventional farming techniques to achieve that objective will only result in an increase in the environmental effects of food production, cause yields to decline, and prematurely derail our Food Security by 2050 campaign.
    This is the Gordian knot that sustainable agriculture has to untie. And sustainable farming principles powered by digital-era technologies such as hyperspectral imaging and advanced machine learning are ushering in a new era of precision agriculture.

    What Is Precision Agriculture?

    Precision agriculture harnesses the power of sophisticated digital technologies to empower farmers to increase their yields while reducing risks, volatility, and environmental impact.
    Data is the key driver of precision agriculture. Precision agriculture prioritises the mapping and analysis of data from every input, process and activity in farming operations. This technology-led, data-driven, and insight-based approach enables accurate real-time mapping of all elements of food production, including soil testing, field mapping, crop scouting, irrigation management, yield monitoring, and weather tracking and forecasting.
    Today, precision agriculture relies on a range of advanced technologies including sensors, drones, robotics, guidance systems, remote sensing, and variable rate technology. Hyperspectral imaging and advanced machine learning are two key components that drive strategic decision making in sustainable agriculture.

    Data Mapping Using Hyperspectral Imaging

    Spectroscopy, the study of how different materials interact with light, is a popular technique used to detect, identify, and analyse different materials based on their unique spectral fingerprint. Spectral imaging combines spectroscopic and spatial data to create a chemical map of the imaged area.
    There are several types of spectral imaging, including multispectral and hyperspectral imaging (HSI), distinguished primarily by their spectral resolution. A standard camera, for instance, is designed to detect light from the visible spectrum across three parts of visible spectrum (red, blue, and green), which we call colors. In comparison, multispectral imaging can capture light from even beyond the visible spectrum, encompassing three to ten spectral bands.
    HSI covers a broad electromagnetic spectrum, like multispectral imaging, but can operate across tens or hundreds of much narrower bands. This results in images with a much higher spectral resolution, containing more detailed data about the target (Fig. 1). This data is available as a three-dimensional cube (Fig. 2) – comprising spectral data along one dimension and spatial data across the other two – that can be used to create a detailed pixel-by-pixel chemical and spatial map of the target.
    Multispectral vs hyperspectral imaging
    Fig. 1: Multispectral vs hyperspectral imaging (source: gamaya.com)

    Data cube with spectral and spatial dimensions
    Fig. 2: Data cube with spectral/spatial dimensions. (source: researchgate.net)
    There is a huge range of applications for HSI in agriculture, including vegetation mapping, yield estimation, disease monitoring, pest and pollutant detection, etc.
    There are, however, some serious data challenges when it comes to the analysis of hyperspectral imagery. Notwithstanding the wealth of spectral information embedded in these images, the high dimensionality created by the thousands of pixels can make classification and analysis a challenging task. In the next section, we will see how advanced machine learning models are rising to this challenge and helping unlock the full potential of HSI.  

    Data Analysis Using Deep Learning

    Inherent HSI data characteristics, such as high dimensionality, non-linear correlations, and large spatial variability of spectral signatures, can make classification and analysis a challenge even for traditional machine learning methods. But recent successes with deep learning in areas like image recognition, object detection and computer vision suggest a huge potential for applying these models to the analysis of hyperspectral imaging.
    Deep learning solutions, especially convolutional neural networks (CNNs), have proven to be successful in the classification of hyperspectral images. The deep convolutional layers used in these models enable them to extract high-level spatial-spectral features effectively, and deep learning models are better at extracting even more abstract features.
    Although deep models and CNNs fare better than conventional machine learning techniques, they face a new set of challenges. Primary among these is the requirement for a large number of training samples, which can be expensive and time consuming.
    But new frameworks are constantly being explored to mitigate these challenges. For instance, one approach proposes a new deep learning framework that integrates gray level co-occurrence matrix (GLCM) features into CNNs to account for the limited number of samples. Experiments with deep&dense CNN models also seem to show a lot of promise in addressing some of the current limitations and enhancing the classification accuracy for hyperspectral imaging.

    The Way Forward

    Until recently, hyperspectral cameras were too bulky and expensive to facilitate widespread deployment. But the increasing availability of compact, low-cost equipment is rapidly expanding the global HSI systems market. In parallel, the development of unmanned aerial vehicles (UAVs), including mini-UAV-borne hyperspectral remote sensing systems is accelerating the adoption of spectral imaging in agriculture and in other civilian applications.
    AgTech startups like Gamaya and FluroSat are already offering commercial solutions that combine airborne remote sensing with HSI and artificial intelligence to improve the efficiency and sustainability of agriculture.  As early as 2016, researchers in Finland were able to convert an iPhone into the world’s first hyperspectral mobile device. Developments like these are constantly making these technologies more affordable and accessible for mainstream agricultural applications.
    The combination of hyperspectral imaging and deep learning has the potential to deliver a host of actionable insights that can help farmers increase the productivity, profitability, and sustainability of their agricultural operations. Accelerating and expanding the adoption of these technologies to agricultural communities across the world is imperative if we are to be able to truly realise the value of sustainable agriculture in time for our 2050 deadline.
    টেকসই কৃষিক্ষেত্র একটি সহজ এবং বাস্তববাদী ধারণা যে কৃষিক্ষেত্র উত্পাদনশীলতা এবং পরিবেশ সুরক্ষার মধ্যে কোনও বাণিজ্য বন্ধ রাখতে হবে না। প্রচলিত পদ্ধতিটি অবশ্য কৃষি ফলন এবং পরিবেশ সুরক্ষাকে এক ধরণের শূন্য-সমীকরণ হিসাবে দেখায় যা পূর্ববর্তী দ্বারা ক্রমাগত আউট-অগ্রাধিকার লাভ করে। ফলস্বরূপ, আমরা কেবলমাত্র ভূগর্ভস্থ জলের হ্রাস, সারের হ্রাস জলবায়ু থেকে জল দূষণ, জীববৈচিত্র্য হ্রাস, মাটি ক্ষয় এবং গ্রিনহাউস গ্যাস নির্গমনের উচ্চ হারের ক্ষেত্রে কৃষির ইতিমধ্যে বিরূপ পরিবেশগত প্রভাবকে আরও বাড়িয়ে তুলতে পেরেছি  
    ২০৫০ নাগাদ বিশ্বব্যাপী ৯ বিলিয়ন জনসংখ্যার খাদ্য সুরক্ষা নিশ্চিত করতে আমরা খাদ্য উত্পাদন 70০ শতাংশ বাড়িয়ে তোলার প্রয়োজনের মুখোমুখি  হয়েছি। সেই লক্ষ্য অর্জনের জন্য প্রচলিত কৃষিক্ষেত্রে প্রত্যাবর্তনই কেবলমাত্র  পরিবেশের প্রভাব বাড়িয়ে দেবে উত্পাদন ,  ফলন হ্রাস হ্রাস , এবং অকাল আগে 2050 প্রচারের মাধ্যমে আমাদের খাদ্য সুরক্ষা লাইনচ্যুত।
    এই গর্ডিয়ান গিঁট যে টেকসই কৃষিক্ষেত্র মুক্ত করতে হবে। এবং হাইপারস্পেকট্রাল ইমেজিং এবং উন্নত মেশিন লার্নিংয়ের মতো ডিজিটাল-যুগের প্রযুক্তি দ্বারা চালিত টেকসই কৃষির নীতিগুলি  নির্ভুল কৃষির নতুন যুগে সূচনা করছে।

    যথার্থ কৃষি কী?

    যথাযথ কৃষিকাজ ঝুঁকি, অস্থিরতা এবং পরিবেশগত প্রভাব হ্রাস করার সময় কৃষকদের তাদের ফলন বাড়াতে সক্ষম করার জন্য পরিশীলিত ডিজিটাল প্রযুক্তির শক্তিকে শক্তিশালী করে।
    ডেটা হ'ল নির্ভুল কৃষির মূল চালক। যথাযথ কৃষিক্ষেত্রে প্রতিটি ইনপুট, প্রক্রিয়া এবং ক্রিয়াকলাপ থেকে ডেটা ম্যাপিং এবং বিশ্লেষণকে অগ্রাধিকার দেয়। এই প্রযুক্তি-নেতৃত্বাধীন, ডেটা-চালিত এবং অন্তর্দৃষ্টি ভিত্তিক পদ্ধতির মাটি পরীক্ষার, ক্ষেত্রের ম্যাপিং, ফসলের স্কাউটিং, সেচ ব্যবস্থাপনার, ফলন পর্যবেক্ষণ, এবং আবহাওয়া ট্র্যাকিং এবং পূর্বাভাস সহ খাদ্য উৎপাদনের সমস্ত উপাদানগুলির সঠিক রিয়েল-টাইম ম্যাপিং সক্ষম করে  
    আজ, নির্ভুল কৃষি সেন্সর, ড্রোন, রোবোটিক্স, গাইডেন্স সিস্টেম, রিমোট সেন্সিং এবং ভেরিয়েবল রেট প্রযুক্তি সহ বিভিন্ন উন্নত প্রযুক্তির উপর নির্ভর করে। হাইপারস্পেকট্রাল ইমেজিং এবং অ্যাডভান্সড মেশিন লার্নিং দুটি মূল উপাদান যা টেকসই কৃষিতে কৌশলগত সিদ্ধান্ত গ্রহণ করে।

    হাইপারস্পেকট্রাল ইমেজিং ব্যবহার করে ডেটা ম্যাপিং

    স্পেকট্রোস্কপি, কীভাবে বিভিন্ন উপকরণ আলোর সাথে যোগাযোগ করে তা অদ্বিতীয় বর্ণাল ফিঙ্গারপ্রিন্টের ভিত্তিতে বিভিন্ন উপকরণ সনাক্তকরণ, সনাক্তকরণ এবং বিশ্লেষণের জন্য ব্যবহৃত একটি জনপ্রিয় কৌশল। বর্ণালী ইমেজিং বর্ণালী এবং স্থানিক তথ্য একত্রিত  করে চিত্রযুক্ত ক্ষেত্রের রাসায়নিক মানচিত্র তৈরি করে ।
    মাল্টিস্পেকট্রাল এবং হাইপারস্পেকট্রাল ইমেজিং (এইচএসআই) সহ বেশ কয়েকটি ধরণের বর্ণালী ইমেজিং রয়েছে, প্রাথমিকভাবে বর্ণালি রেজোলিউশনের মাধ্যমে আলাদা। উদাহরণস্বরূপ, একটি স্ট্যান্ডার্ড ক্যামেরা দৃশ্যমান বর্ণালী থেকে দৃশ্যমান বর্ণালী (লাল, নীল এবং সবুজ) এর তিনটি অংশ জুড়ে আলো সনাক্ত করার জন্য ডিজাইন করা হয়েছে, যা আমরা রঙ বলে call তুলনায়, মাল্টিস্পেক্ট্রাল ইমেজিং দৃশ্যমান বর্ণালী ছাড়িয়ে এমনকি তিন থেকে দশ বর্ণালী ব্যান্ডকে ঘিরে আলো ক্যাপচার করতে  পারে ।
    এইচএসআই মাল্টিসেপেক্ট্রাল ইমেজিংয়ের মতো একটি বিস্তৃত তড়িৎ চৌম্বকীয় বর্ণালীকে কভার করে তবে দশক বা শত শত সংকীর্ণ ব্যান্ড জুড়ে পরিচালনা করতে পারে। লক্ষ্যটির সম্পর্কে আরও বিশদ ডেটা (চিত্র 1 এই তথ্যটি ত্রি-মাত্রিক ঘনক্ষেত্র হিসাবে পাওয়া যায় (চিত্র 2) - এক মাত্রার সাথে বর্ণালী ডেটা এবং অন্যান্য দুটি জুড়ে স্থানিক ডেটা সমন্বিত - এটি লক্ষ্যবস্তুটির একটি পিক্সেল বাই পিক্সেল রাসায়নিক এবং স্থানিক মানচিত্র তৈরি করতে ব্যবহার করা যেতে পারে ।
    মাল্টিস্পেকট্রাল বনাম হাইপারস্পেকট্রাল ইমেজিং
    চিত্র 1: মাল্টিস্পেকট্রাল বনাম হাইপারস্পেকট্রাল ইমেজিং (উত্স: gamaya.com )

    বর্ণালী এবং স্থানিক মাত্রার সাথে ডেটা কিউব
    চিত্র 2: বর্ণাল / স্থানিক মাত্রা সহ ডেটা কিউব। (উত্স: রিসার্চগেট.নেট )
    কৃষিতে এইচএসআইয়ের জন্য প্রচুর অ্যাপ্লিকেশন রয়েছে, যার মধ্যে উদ্ভিদ ম্যাপিং, ফলন অনুমান, রোগের তদারকি, কীট এবং দূষণকারী সনাক্তকরণ ইত্যাদি রয়েছে including
    হাইপারস্পেকট্রাল চিত্রের বিশ্লেষণের ক্ষেত্রে কিছু গুরুতর ডেটা চ্যালেঞ্জ রয়েছে। এই চিত্রগুলিতে এম্বেড বর্ণালী তথ্যের ধন সত্ত্বেও,  হাজার পিক্সেলের তৈরি উচ্চ মাত্রিকতা শ্রেণিবিন্যাস এবং বিশ্লেষণকে একটি চ্যালেঞ্জিং কাজ করতে পারে। পরবর্তী বিভাগে, আমরা দেখব কীভাবে উন্নত মেশিন লার্নিং মডেলগুলি এই চ্যালেঞ্জের দিকে এগিয়ে  চলেছে এবং এইচএসআইয়ের সম্পূর্ণ সম্ভাব্যতা আনলক করতে সহায়তা করে।  

    গভীর জ্ঞান ব্যবহার করে ডেটা বিশ্লেষণ

    অন্তর্নিহিত এইচএসআই ডেটা বৈশিষ্ট্য যেমন উচ্চ মাত্রিকতা, অ-লিনিয়ার পারস্পরিক সম্পর্ক এবং  বর্ণালী স্বাক্ষরগুলির বৃহত স্থানগত পরিবর্তনশীলতা এমনকি traditional মেশিন লার্নিং পদ্ধতিগুলির জন্য শ্রেণিবিন্যাস এবং বিশ্লেষণকে একটি চ্যালেঞ্জ তৈরি করতে পারে  । তবে চিত্রের স্বীকৃতি, অবজেক্ট সনাক্তকরণ এবং কম্পিউটার ভিশনের মতো ক্ষেত্রে গভীর শিক্ষার সাথে সাম্প্রতিক সাফল্যগুলি  হাইপারস্পেকট্রাল ইমেজিং বিশ্লেষণে এই মডেলগুলি প্রয়োগ করার একটি বিশাল সম্ভাবনার পরামর্শ দেয়।
    গভীর শেখার সমাধানগুলি, বিশেষত কনভ্যুশনাল নিউরাল নেটওয়ার্কগুলি (সিএনএন) হাইপারস্পেকট্রাল চিত্রগুলির শ্রেণিবিন্যাসে সফল হিসাবে প্রমাণিত হয়েছে। এই মডেলগুলিতে ব্যবহৃত গভীর সমঝোতা স্তরগুলি তাদের উচ্চ-স্তরের স্থানিক-বর্ণালী বৈশিষ্ট্যগুলি কার্যকরভাবে নিষ্কাশন করতে সক্ষম করে  এবং গভীর শিক্ষার মডেলগুলি আরও বিমূর্ত বৈশিষ্ট্যগুলি সন্ধান করতে আরও ভাল  
    যদিও গভীর মডেল এবং সিএনএন প্রচলিত মেশিন লার্নিং কৌশলগুলির চেয়ে ভাল ভাড়া দেয়, তারা চ্যালেঞ্জগুলির একটি নতুন সেটের মুখোমুখি। এর মধ্যে প্রাথমিক হ'ল  বিপুল সংখ্যক প্রশিক্ষণের নমুনার প্রয়োজন , যা ব্যয়বহুল এবং সময় সাপেক্ষ হতে পারে।
    তবে এই চ্যালেঞ্জগুলি প্রশমিত করতে নিয়মিত নতুন কাঠামো অনুসন্ধান করা হচ্ছে। উদাহরণস্বরূপ, একটি পদ্ধতির একটি নতুন গভীর শেখার কাঠামো প্রস্তাব করা হয়েছে  যা ধূসর স্তরের সহ-উপস্থিতি ম্যাট্রিক্স (জিএলসিএম) বৈশিষ্ট্যগুলিকে সিএনএন-তে সীমাবদ্ধ সংখ্যার জন্য অ্যাকাউন্টে সংহত করে। গভীর এবং ঘন সিএনএন মডেলগুলির পরীক্ষা-  নিরীক্ষাও বর্তমানের কিছু সীমাবদ্ধতা মোকাবেলায় এবং হাইপারস্পেকট্রাল ইমেজিংয়ের শ্রেণিবিন্যাসের নির্ভুলতা বাড়াতে প্রচুর প্রতিশ্রুতি দেখায় বলে মনে হয়।

    দ্য ফরোয়ার্ড

    সাম্প্রতিক অবধি হাইপারস্পেকট্রাল ক্যামেরাগুলি ব্যাপক স্থাপনার সুবিধার্থে খুব ভারী এবং ব্যয়বহুল ছিল। তবে কমপ্যাক্ট, কম খরচে সরঞ্জামের ক্রমবর্ধমান প্রাপ্যতা দ্রুত গ্লোবাল এইচএসআই সিস্টেমের বাজারকে প্রসারিত করছে। সমান্তরালভাবে, মিনি-ইউএভি-বাহিত হাইপারস্পেকট্রাল রিমোট সেন্সিং সিস্টেম সহ মানহীন বিমানবাহী যানবাহনের (ইউএভি) বিকাশ  কৃষিতে এবং অন্যান্য বেসামরিক প্রয়োগগুলিতে বর্ণালী ইমেজিং গ্রহণকে ত্বরান্বিত করছে।
    গামায়া এবং ফ্লুরোস্যাট এর মতো অ্যাজটেক স্টার্টআপগুলি ইতিমধ্যে বাণিজ্যিক সমাধান সরবরাহ করছে যা বায়ুবাহিত দূরবর্তী সংবেদনের সাথে এইচএসআই এবং কৃত্রিম বুদ্ধিমত্তাকে কৃষির দক্ষতা এবং স্থায়িত্বের উন্নতি করতে মিলিত করে।  2016 সালের প্রথমদিকে, ফিনল্যান্ডের গবেষকরা একটি আইফোনকে বিশ্বের প্রথম হাইপারস্পেকট্রাল মোবাইল ডিভাইসে রূপান্তর করতে সক্ষম হন  । এর মতো উন্নয়নগুলি ধারাবাহিকভাবে এই প্রযুক্তিগুলিকে মূলধারার কৃষিকাজ প্রয়োগের জন্য আরও সাশ্রয়ী এবং অ্যাক্সেসযোগ্য করে তুলছে 
    হাইপারস্পেকট্রাল ইমেজিং এবং গভীর শিক্ষার সংমিশ্রণে প্রচুর পরিমাণে কার্যনির্বাহী অন্তর্দৃষ্টি সরবরাহ করার সম্ভাবনা রয়েছে যা কৃষকদের তাদের কৃষিকাজের উত্পাদনশীলতা, লাভজনকতা এবং টেকসইতা বৃদ্ধি করতে সহায়তা করতে পারে। বিশ্বজুড়ে কৃষি সম্প্রদায়ের কাছে এই প্রযুক্তিগুলির গ্রহণকে ত্বরান্বিত ও প্রসারিত করা যদি আমাদের ২০৫০ সালের সময়সীমার জন্য সময় মতো টেকসই কৃষির মূল্যকে সত্যিকার অর্থে উপলব্ধি করতে সক্ষম হয় তবে তা জরুরি।


  • 0 comments:

    Post a Comment

    New Research

    Attention Mechanism Based Multi Feature Fusion Forest for Hyperspectral Image Classification.

    CBS-GAN: A Band Selection Based Generative Adversarial Net for Hyperspectral Sample Generation.

    Multi-feature Fusion based Deep Forest for Hyperspectral Image Classification.

    ADDRESS

    388 Lumo Rd, Hongshan, Wuhan, Hubei, China

    EMAIL

    contact-m.zamanb@yahoo.com
    mostofa.zaman@cug.edu.cn

    TELEPHONE

    #
    #

    MOBILE

    +8615527370302,
    +8807171546477