• আর্টিফিশিয়াল নিউরাল নেটওয়ার্ক

    নিউরাল নেটওয়ার্ক এবং অন্য যেকোনো রকম নেটওয়ার্ক (যেমন – কিছু কম্পিউটার মিলে একটি লোকাল এরিয়া নেটওয়ার্ক অথবা পুরো ওয়েব নেটওয়ার্ক) বস্তুত একই। বেশ কিছু নোড বা পয়েন্ট একে ওপরের সাথে নির্দিষ্ট কিছু নিয়মে যুক্ত থেকে নিজেদের মধ্যে তথ্য আদান প্রদান করলেই তাকে একটা নেটওয়ার্ক বলা যায়। নিউরাল নেটওয়ার্কের ক্ষেত্রে সেই নোড (Node) হচ্ছে এক একটি নিউরন। আমাদের ব্রেইনের মধ্যে বস্তুত বিলিয়ন সংখ্যক নিউরনের একটা নেটওয়ার্ক তৈরি করা আছে। মোটামুটি সেই গঠন শৈলীর উপর ভিত্তি করেই ডাটা থেকে প্যাটার্ন রিকগনিশনের জন্য এক ধরনের কার্যপদ্ধতির নামই হচ্ছে আর্টিফিশিয়াল নিউরাল নেটওয়ার্ক। অর্থাৎ সত্যিকারের নিউরান যে নীতিতে কাজ করে, এই নিউরনও একইভাবে কাজ করে। কিন্তু যেহেতু এগুলো সত্যিকারের নিউরন নয় তাই এটার নাম আর্টিফিশিয়াল নিউরাল নেটওয়ার্ক।
    ভিত্তি তো আমরা যদি একটু দুঃসাহস করে সত্যিকারের একটা নিউরনের কার্যনীতি দেখি তাহলে আমরা জানতে পারি যে – একটা নিউরনের কিছু ইনপুট দরকার এবং সেই ইনপুট গুলো আসে Dendrite নামের কিছু ডাল পালার মত অংশ দিয়ে, এরপর নিউরন বডি বা Soma নামের অংশে কিছু ক্যালকুলেশন হয় সেই ইনপুট গুলোর উপর। অতঃপর Axon নামের লেজের মত একটা অংশ দিয়ে সেই ক্যালকুলেশনের আউটপুট বের হয় যা কিনা আবার অন্য এক বা একাধিক নিউরনের ইনপুট স্লট তথা Dendrite এ চলে যায়। একটি নিউরনের এক্সন এবং অন্য নিউরনের ডেন্ড্রাইটের মাঝে Synapse নামের কিছু তরল থাকে। এটাই বস্তুত এক নিউরন থেকে আরেক নিউরনের কাছে এক্সনের আউটপুট কে ডেন্ড্ররাইটে ইনপুট দেয়ার ক্ষেত্রে ট্রান্সমিশনের ভূমিকা রাখে। যদি একটি নিউরনের যথেষ্ট পরিমাণ সিন্যাপ্টিক ইনপুট ফায়ার (আশানুরূপ একটা ভ্যালু তৈরি করে) করে তাহলে সেই নিউরনটা ফায়ার করে বা বলা যেতে পারে যে, সেই নিউরনটা অ্যাকটিভ হয়। বিষয় হচ্ছে – এই ঘটনাকেই চিন্তা করা বলে।
  • 0 comments:

    Post a Comment

    New Research

    Attention Mechanism Based Multi Feature Fusion Forest for Hyperspectral Image Classification.

    CBS-GAN: A Band Selection Based Generative Adversarial Net for Hyperspectral Sample Generation.

    Multi-feature Fusion based Deep Forest for Hyperspectral Image Classification.

    ADDRESS

    388 Lumo Rd, Hongshan, Wuhan, Hubei, China

    EMAIL

    contact-m.zamanb@yahoo.com
    mostofa.zaman@cug.edu.cn

    TELEPHONE

    #
    #

    MOBILE

    +8615527370302,
    +8807171546477