• Image captioning with visual attention

    Image captioning with visual attention

    নীচের উদাহরণের মতো একটি চিত্র দেওয়া, আমাদের লক্ষ্য হ'ল 'একটি তরঙ্গের উপর চড়া সার্ফার' এর মতো একটি ক্যাপশন তৈরি করা।

    Man Surfing
    Image Source; License: Public Domain

    এটি সম্পাদন করার জন্য, আপনি একটি মনোনিবেশ ভিত্তিক মডেল ব্যবহার করবেন, যা শিরোনাম উত্পন্ন করার সাথে সাথে মডেলটির চিত্রের কোন অংশগুলিতে দৃষ্টি নিবদ্ধ করে তা আমাদের সক্ষম করে।
    Prediction
    মডেল আর্কিটেকচারটি শো, উপস্থিতি এবং বলার মতো: ভিজুয়াল মনোযোগ সহ নিউরাল ইমেজ ক্যাপশন জেনারেশন।

    এই নোটবুক একটি শেষ থেকে শেষ উদাহরণ। আপনি যখন নোটবুকটি চালান, এটি এমএস-কোকো ডেটাসেট ডাউনলোড করে, ইনসেপশন ভি 3 ব্যবহার করে চিত্রের একটি উপসেট প্রিপ্রোসেসিস এবং ক্যাশে করে, একটি এনকোডার-ডিকোডার মডেল প্রশিক্ষণ দেয় এবং প্রশিক্ষিত মডেলটি ব্যবহার করে নতুন চিত্রগুলিতে ক্যাপশন তৈরি করে।

    এই উদাহরণস্বরূপ, আপনি তুলনামূলকভাবে অল্প পরিমাণ ডেটাতে একটি মডেলকে প্রশিক্ষণ দেবেন - প্রায় 20,000 চিত্রের জন্য প্রথম 30,000 ক্যাপশন (কারণ ডেটাশেটে ছবিতে একাধিক ক্যাপশন রয়েছে)।

    from __future__ import absolute_import, division, print_function, unicode_literals
    import tensorflow as tf
    # You'll generate plots of attention in order to see which parts of an image
    # our model focuses on during captioning
    import matplotlib.pyplot as plt
    # Scikit-learn includes many helpful utilities
    from sklearn.model_selection import train_test_splitfrom sklearn.utils import shuffle
    import reimport numpy as npimport osimport timeimport jsonfrom glob import globfrom PIL import Image
    import pickle
    এমএস-কোকো ডেটাসেটটি ডাউনলোড এবং প্রস্তুত করুন

    আপনি আমাদের মডেলটি প্রশিক্ষণ দিতে MS-COCO ডেটাসেট ব্যবহার করবেন। ডেটাসেটে 82,000 এরও বেশি চিত্র রয়েছে, যার প্রতিটিতে কমপক্ষে 5 টি আলাদা ক্যাপশন টিকা রয়েছে ann নীচের কোডটি স্বয়ংক্রিয়ভাবে ডেটাসেটটি ডাউনলোড এবং নিষ্কাশন করে।

    Caution: large download ahead. You'll use the training set, which is a 13GB file.
    annotation_zip = tf.keras.utils.get_file('captions.zip',
                                              cache_subdir=os.path.abspath('.'),
                                              origin = 'http://images.cocodataset.org/annotations/annotations_trainval2014.zip',
                                              extract = True)
    annotation_file = os.path.dirname(annotation_zip)+'/annotations/captions_train2014.json'
    
    name_of_zip = 'train2014.zip'
    if not os.path.exists(os.path.abspath('.') + '/' + name_of_zip):
      image_zip = tf.keras.utils.get_file(name_of_zip,
                                          cache_subdir=os.path.abspath('.'),
                                          origin = 'http://images.cocodataset.org/zips/train2014.zip',
                                          extract = True)
      PATH = os.path.dirname(image_zip)+'/train2014/'
    else:
      PATH = os.path.abspath('.')+'/train2014/'
    
    Downloading data from http://images.cocodataset.org/annotations/annotations_trainval2014.zip
    252878848/252872794 [==============================] - 8s 0us/step
    Downloading data from http://images.cocodataset.org/zips/train2014.zip
    12593045504/13510573713 [==========================>...] - ETA: 27s

    Optional: limit the size of the training set

    এই টিউটোরিয়ালটির প্রশিক্ষণের গতি বাড়ানোর জন্য, আপনি আমাদের মডেলটিকে প্রশিক্ষণ দিতে 30,000 ক্যাপশন এবং তাদের সাথে সম্পর্কিত চিত্রগুলির একটি উপসেট ব্যবহার করবেন। আরও ডেটা ব্যবহার করার সিদ্ধান্ত নেওয়ার ফলে ক্যাপশনের গুণমান উন্নত হবে।

    # Read the json file
    with open(annotation_file, 'r') as f:
        annotations = json.load(f)
    # Store captions and image names in vectors
    all_captions = []
    all_img_name_vector = []
    for annot in annotations['annotations']:
        caption = '<start> ' + annot['caption'] + ' <end>'
        image_id = annot['image_id']
        full_coco_image_path = PATH + 'COCO_train2014_' + '%012d.jpg' % (image_id)
    
        all_img_name_vector.append(full_coco_image_path)
        all_captions.append(caption)
    # Shuffle captions and image_names together
    # Set a random state
    train_captions, img_name_vector = shuffle(all_captions,
                                              all_img_name_vector,
                                              random_state=1)
    # Select the first 30000 captions from the shuffled set
    num_examples = 30000
    train_captions = train_captions[:num_examples]
    img_name_vector = img_name_vector[:num_examples]
    
    len(train_captions), len(all_captions)
    
    (30000, 414113)
    ইনসেপশনভি 3 ব্যবহার করে চিত্রগুলি পূর্ববর্তী করুন
    এরপরে, আপনি প্রতিটি চিত্র শ্রেণিবদ্ধ করতে ইনসেপশনভি 3 (যা ইমেজেনেটে পূর্বনির্ধারিত) ব্যবহার করবেন। আপনি শেষ সমাবর্তন স্তর থেকে বৈশিষ্ট্যগুলি নিষ্কাশন করবেন।

    প্রথমত, আপনি চিত্রগুলি ইনসেপশনভি 3 এর প্রত্যাশিত বিন্যাসে রূপান্তর করবেন: * চিত্রটি পুনরায় আকার দিয়ে 299px দ্বারা 299px * ছবিটিকে প্রাকৃতিককরণের জন্য প্রাক-প্রসেস_ইনপুট পদ্ধতি ব্যবহার করে চিত্রগুলি প্রসেস করুন যাতে এতে পিক্সেল থাকে -1 থেকে 1 এর মধ্যে, যা মেলে ইনসেপশনভি 3 প্রশিক্ষণ দেওয়ার জন্য ব্যবহৃত চিত্রগুলির ফর্ম্যাট।

    def load_image(image_path):
        img = tf.io.read_file(image_path)
        img = tf.image.decode_jpeg(img, channels=3)
        img = tf.image.resize(img, (299, 299))
        img = tf.keras.applications.inception_v3.preprocess_input(img)
        return img, image_path
    ইনসেপশনভি 3 সূচনা করুন এবং প্রাক-প্রশিক্ষিত চিত্রের ওজন লোড করুন
    এখন আপনি একটি tf.keras মডেল তৈরি করবেন যেখানে ইনসেপশনভি 3 আর্কিটেকচারের আউটপুট স্তরটি শেষ সমাবর্তন স্তর। এই স্তরটির আউটপুটটির আকার 8x8x2048। আপনি সর্বশেষ সমাবর্তন স্তরটি ব্যবহার করেন কারণ আপনি এই উদাহরণে মনোযোগ ব্যবহার করছেন। প্রশিক্ষণের সময় আপনি এই সূচনাটি সম্পাদন করেন না কারণ এটি কোনও বাধা হয়ে উঠতে পারে।

    • You forward each image through the network and store the resulting vector in a dictionary (image_name --> feature_vector).
    • After all the images are passed through the network, you pickle the dictionary and save it to disk.
    image_model = tf.keras.applications.InceptionV3(include_top=False,
                                                    weights='imagenet')
    new_input = image_model.input
    hidden_layer = image_model.layers[-1].output
    
    image_features_extract_model = tf.keras.Model(new_input, hidden_layer)
    
    Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.5/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5
    87916544/87910968 [==============================] - 3s 0us/step
    ইনসেপশনভি 3 থেকে প্রাপ্ত বৈশিষ্ট্যগুলি ক্যাশে করা হচ্ছে

    You will pre-process each image with InceptionV3 and cache the output to disk. Caching the output in RAM would be faster but also memory intensive, requiring 8 * 8 * 2048 floats per image. At the time of writing, this exceeds the memory limitations of Colab (currently 12GB of memory).
    Performance could be improved with a more sophisticated caching strategy (for example, by sharding the images to reduce random access disk I/O), but that would require more code.
    The caching will take about 10 minutes to run in Colab with a GPU. If you'd like to see a progress bar, you can:
    1. install tqdm:
      !pip install -q tqdm
    2. Import tqdm:
      from tqdm import tqdm
    3. Change the following line:
      for img, path in image_dataset:
      to:
      for img, path in tqdm(image_dataset):
    # Get unique images
    encode_train = sorted(set(img_name_vector))
    # Feel free to change batch_size according to your system configuration
    image_dataset = tf.data.Dataset.from_tensor_slices(encode_train)
    image_dataset = image_dataset.map(
      load_image, num_parallel_calls=tf.data.experimental.AUTOTUNE).batch(16)
    for img, path in image_dataset:
      batch_features = image_features_extract_model(img)
      batch_features = tf.reshape(batch_features,
                                  (batch_features.shape[0], -1, batch_features.shape[3]))
    
      for bf, p in zip(batch_features, path):
        path_of_feature = p.numpy().decode("utf-8")
        np.save(path_of_feature, bf.numpy())

    Preprocess and tokenize the captions

    # Find the maximum length of any caption in our dataset
    def calc_max_length(tensor):
        return max(len(t) for t in tensor)
    
    # Choose the top 5000 words from the vocabulary
    top_k = 5000
    tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=top_k,
                                                      oov_token="<unk>",
                                                      filters='!"#$%&()*+.,-/:;=?@[\]^_`{|}~ ')
    tokenizer.fit_on_texts(train_captions)
    train_seqs = tokenizer.texts_to_sequences(train_captions)
    
    tokenizer.word_index['<pad>'] = 0
    tokenizer.index_word[0] = '<pad>'
    
    # Create the tokenized vectors
    train_seqs = tokenizer.texts_to_sequences(train_captions)
    
    # Pad each vector to the max_length of the captions
    # If you do not provide a max_length value, pad_sequences calculates it automatically
    cap_vector = tf.keras.preprocessing.sequence.pad_sequences(train_seqs, padding='post')
    
    # Calculates the max_length, which is used to store the attention weights
    max_length = calc_max_length(train_seqs)
    

    Split the data into training and testing

    # Create training and validation sets using an 80-20 split
    img_name_train, img_name_val, cap_train, cap_val = train_test_split(img_name_vector,
                                                                        cap_vector,
                                                                        test_size=0.2,
                                                                        random_state=0)
    
    len(img_name_train), len(cap_train), len(img_name_val), len(cap_val)
    
    (24000, 24000, 6000, 6000)

    Create a tf.data dataset for training

    Our images and captions are ready! Next, let's create a tf.data dataset to use for training our model.
    # Feel free to change these parameters according to your system's configuration
    
    BATCH_SIZE = 64
    BUFFER_SIZE = 1000
    embedding_dim = 256
    units = 512
    vocab_size = len(tokenizer.word_index) + 1
    num_steps = len(img_name_train) // BATCH_SIZE
    # Shape of the vector extracted from InceptionV3 is (64, 2048)
    # These two variables represent that vector shape
    features_shape = 2048
    attention_features_shape = 64
    
    # Load the numpy files
    def map_func(img_name, cap):
      img_tensor = np.load(img_name.decode('utf-8')+'.npy')
      return img_tensor, cap
    dataset = tf.data.Dataset.from_tensor_slices((img_name_train, cap_train))
    # Use map to load the numpy files in parallel
    dataset = dataset.map(lambda item1, item2: tf.numpy_function(
              map_func, [item1, item2], [tf.float32, tf.int32]),
              num_parallel_calls=tf.data.experimental.AUTOTUNE)
    # Shuffle and batch
    dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
    dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
    

    Model

    Fun fact: the decoder below is identical to the one in the example for Neural Machine Translation with Attention.
    The model architecture is inspired by the Show, Attend and Tell paper.
    • In this example, you extract the features from the lower convolutional layer of InceptionV3 giving us a vector of shape (8, 8, 2048).
    • You squash that to a shape of (64, 2048).
    • This vector is then passed through the CNN Encoder (which consists of a single Fully connected layer).
    • The RNN (here GRU) attends over the image to predict the next word.
    class BahdanauAttention(tf.keras.Model):
      def __init__(self, units):
        super(BahdanauAttention, self).__init__()
        self.W1 = tf.keras.layers.Dense(units)
        self.W2 = tf.keras.layers.Dense(units)
        self.V = tf.keras.layers.Dense(1)
    
      def call(self, features, hidden):
        # features(CNN_encoder output) shape == (batch_size, 64, embedding_dim)
    
        # hidden shape == (batch_size, hidden_size)
        # hidden_with_time_axis shape == (batch_size, 1, hidden_size)
        hidden_with_time_axis = tf.expand_dims(hidden, 1)
    
        # score shape == (batch_size, 64, hidden_size)
        score = tf.nn.tanh(self.W1(features) + self.W2(hidden_with_time_axis))
    
        # attention_weights shape == (batch_size, 64, 1)
        # you get 1 at the last axis because you are applying score to self.V
        attention_weights = tf.nn.softmax(self.V(score), axis=1)
    
        # context_vector shape after sum == (batch_size, hidden_size)
        context_vector = attention_weights * features
        context_vector = tf.reduce_sum(context_vector, axis=1)
    
        return context_vector, attention_weights
    class CNN_Encoder(tf.keras.Model):
        # Since you have already extracted the features and dumped it using pickle
        # This encoder passes those features through a Fully connected layer
        def __init__(self, embedding_dim):
            super(CNN_Encoder, self).__init__()
            # shape after fc == (batch_size, 64, embedding_dim)
            self.fc = tf.keras.layers.Dense(embedding_dim)
    
        def call(self, x):
            x = self.fc(x)
            x = tf.nn.relu(x)
            return x
    class RNN_Decoder(tf.keras.Model):
      def __init__(self, embedding_dim, units, vocab_size):
        super(RNN_Decoder, self).__init__()
        self.units = units
    
        self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
        self.gru = tf.keras.layers.GRU(self.units,
                                       return_sequences=True,
                                       return_state=True,
                                       recurrent_initializer='glorot_uniform')
        self.fc1 = tf.keras.layers.Dense(self.units)
        self.fc2 = tf.keras.layers.Dense(vocab_size)
    
        self.attention = BahdanauAttention(self.units)
    
      def call(self, x, features, hidden):
        # defining attention as a separate model
        context_vector, attention_weights = self.attention(features, hidden)
    
        # x shape after passing through embedding == (batch_size, 1, embedding_dim)
        x = self.embedding(x)
    
        # x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)
        x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)
    
        # passing the concatenated vector to the GRU
        output, state = self.gru(x)
    
        # shape == (batch_size, max_length, hidden_size)
        x = self.fc1(output)
    
        # x shape == (batch_size * max_length, hidden_size)
        x = tf.reshape(x, (-1, x.shape[2]))
    
        # output shape == (batch_size * max_length, vocab)
        x = self.fc2(x)
    
        return x, state, attention_weights
    
      def reset_state(self, batch_size):
        return tf.zeros((batch_size, self.units))
    
    encoder = CNN_Encoder(embedding_dim)
    decoder = RNN_Decoder(embedding_dim, units, vocab_size)
    
    optimizer = tf.keras.optimizers.Adam()
    loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
        from_logits=True, reduction='none')
    def loss_function(real, pred):
      mask = tf.math.logical_not(tf.math.equal(real, 0))
      loss_ = loss_object(real, pred)
    
      mask = tf.cast(mask, dtype=loss_.dtype)
      loss_ *= mask
    
      return tf.reduce_mean(loss_)
    

    Checkpoint

    checkpoint_path = "./checkpoints/train"
    ckpt = tf.train.Checkpoint(encoder=encoder,
                               decoder=decoder,
                               optimizer = optimizer)
    ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)
    
    start_epoch = 0
    if ckpt_manager.latest_checkpoint:
      start_epoch = int(ckpt_manager.latest_checkpoint.split('-')[-1])
    

    Training

    • You extract the features stored in the respective .npy files and then pass those features through the encoder.
    • The encoder output, hidden state(initialized to 0) and the decoder input (which is the start token) is passed to the decoder.
    • The decoder returns the predictions and the decoder hidden state.
    • The decoder hidden state is then passed back into the model and the predictions are used to calculate the loss.
    • Use teacher forcing to decide the next input to the decoder.
    • Teacher forcing is the technique where the target word is passed as the next input to the decoder.
    • The final step is to calculate the gradients and apply it to the optimizer and backpropagate.
    # adding this in a separate cell because if you run the training cell
    # many times, the loss_plot array will be reset
    loss_plot = []
    
    @tf.function
    def train_step(img_tensor, target):
      loss = 0
    
      # initializing the hidden state for each batch
      # because the captions are not related from image to image
      hidden = decoder.reset_state(batch_size=target.shape[0])
    
      dec_input = tf.expand_dims([tokenizer.word_index['<start>']] * BATCH_SIZE, 1)
    
      with tf.GradientTape() as tape:
          features = encoder(img_tensor)
    
          for i in range(1, target.shape[1]):
              # passing the features through the decoder
              predictions, hidden, _ = decoder(dec_input, features, hidden)
    
              loss += loss_function(target[:, i], predictions)
    
              # using teacher forcing
              dec_input = tf.expand_dims(target[:, i], 1)
    
      total_loss = (loss / int(target.shape[1]))
    
      trainable_variables = encoder.trainable_variables + decoder.trainable_variables
    
      gradients = tape.gradient(loss, trainable_variables)
    
      optimizer.apply_gradients(zip(gradients, trainable_variables))
    
      return loss, total_loss
    EPOCHS = 20
    for epoch in range(start_epoch, EPOCHS):
        start = time.time()
        total_loss = 0
    
        for (batch, (img_tensor, target)) in enumerate(dataset):
            batch_loss, t_loss = train_step(img_tensor, target)
            total_loss += t_loss
    
            if batch % 100 == 0:
                print ('Epoch {} Batch {} Loss {:.4f}'.format(
                  epoch + 1, batch, batch_loss.numpy() / int(target.shape[1])))
        # storing the epoch end loss value to plot later
        loss_plot.append(total_loss / num_steps)
    
        if epoch % 5 == 0:
          ckpt_manager.save()
    
        print ('Epoch {} Loss {:.6f}'.format(epoch + 1,
                                             total_loss/num_steps))
        print ('Time taken for 1 epoch {} sec\n'.format(time.time() - start))
    
    Epoch 1 Batch 0 Loss 2.0988
    Epoch 1 Batch 100 Loss 1.1463
    Epoch 1 Batch 200 Loss 1.0366
    Epoch 1 Batch 300 Loss 0.9083
    Epoch 1 Loss 1.085102
    Time taken for 1 epoch 131.9147825241089 sec
    
    Epoch 2 Batch 0 Loss 0.8748
    Epoch 2 Batch 100 Loss 0.7652
    Epoch 2 Batch 200 Loss 0.7708
    Epoch 2 Batch 300 Loss 0.7578
    Epoch 2 Loss 0.812931
    Time taken for 1 epoch 49.82423710823059 sec
    
    Epoch 3 Batch 0 Loss 0.8118
    Epoch 3 Batch 100 Loss 0.7946
    Epoch 3 Batch 200 Loss 0.7396
    Epoch 3 Batch 300 Loss 0.6746
    Epoch 3 Loss 0.735972
    Time taken for 1 epoch 49.87708878517151 sec
    
    Epoch 4 Batch 0 Loss 0.6586
    Epoch 4 Batch 100 Loss 0.7100
    Epoch 4 Batch 200 Loss 0.6617
    Epoch 4 Batch 300 Loss 0.7083
    Epoch 4 Loss 0.688551
    Time taken for 1 epoch 49.925899028778076 sec
    
    Epoch 5 Batch 0 Loss 0.6543
    Epoch 5 Batch 100 Loss 0.6995
    Epoch 5 Batch 200 Loss 0.6268
    Epoch 5 Batch 300 Loss 0.6577
    Epoch 5 Loss 0.650644
    Time taken for 1 epoch 49.861159801483154 sec
    
    Epoch 6 Batch 0 Loss 0.6031
    Epoch 6 Batch 100 Loss 0.5955
    Epoch 6 Batch 200 Loss 0.6627
    Epoch 6 Batch 300 Loss 0.5704
    Epoch 6 Loss 0.617129
    Time taken for 1 epoch 50.251293659210205 sec
    
    Epoch 7 Batch 0 Loss 0.5712
    Epoch 7 Batch 100 Loss 0.5685
    Epoch 7 Batch 200 Loss 0.5779
    Epoch 7 Batch 300 Loss 0.5544
    Epoch 7 Loss 0.586807
    Time taken for 1 epoch 50.4225971698761 sec
    
    Epoch 8 Batch 0 Loss 0.5429
    Epoch 8 Batch 100 Loss 0.5585
    Epoch 8 Batch 200 Loss 0.5514
    Epoch 8 Batch 300 Loss 0.5229
    Epoch 8 Loss 0.555478
    Time taken for 1 epoch 50.04306435585022 sec
    
    Epoch 9 Batch 0 Loss 0.5150
    Epoch 9 Batch 100 Loss 0.5001
    Epoch 9 Batch 200 Loss 0.5294
    Epoch 9 Batch 300 Loss 0.5434
    Epoch 9 Loss 0.526150
    Time taken for 1 epoch 49.535995960235596 sec
    
    Epoch 10 Batch 0 Loss 0.4677
    Epoch 10 Batch 100 Loss 0.5044
    Epoch 10 Batch 200 Loss 0.4583
    Epoch 10 Batch 300 Loss 0.4794
    Epoch 10 Loss 0.496457
    Time taken for 1 epoch 50.2047655582428 sec
    
    Epoch 11 Batch 0 Loss 0.4150
    Epoch 11 Batch 100 Loss 0.4491
    Epoch 11 Batch 200 Loss 0.4283
    Epoch 11 Batch 300 Loss 0.4874
    Epoch 11 Loss 0.465688
    Time taken for 1 epoch 50.450185775756836 sec
    
    Epoch 12 Batch 0 Loss 0.4305
    Epoch 12 Batch 100 Loss 0.4535
    Epoch 12 Batch 200 Loss 0.4198
    Epoch 12 Batch 300 Loss 0.4154
    Epoch 12 Loss 0.437214
    Time taken for 1 epoch 49.61044931411743 sec
    
    Epoch 13 Batch 0 Loss 0.4156
    Epoch 13 Batch 100 Loss 0.4067
    Epoch 13 Batch 200 Loss 0.4412
    Epoch 13 Batch 300 Loss 0.4066
    Epoch 13 Loss 0.429518
    Time taken for 1 epoch 50.13954949378967 sec
    
    Epoch 14 Batch 0 Loss 0.3823
    Epoch 14 Batch 100 Loss 0.4156
    Epoch 14 Batch 200 Loss 0.3560
    Epoch 14 Batch 300 Loss 0.4084
    Epoch 14 Loss 0.387618
    Time taken for 1 epoch 49.05424618721008 sec
    
    Epoch 15 Batch 0 Loss 0.3724
    Epoch 15 Batch 100 Loss 0.3452
    Epoch 15 Batch 200 Loss 0.3371
    Epoch 15 Batch 300 Loss 0.3183
    Epoch 15 Loss 0.358968
    Time taken for 1 epoch 49.87037777900696 sec
    
    Epoch 16 Batch 0 Loss 0.3415
    Epoch 16 Batch 100 Loss 0.3094
    Epoch 16 Batch 200 Loss 0.3534
    Epoch 16 Batch 300 Loss 0.3220
    Epoch 16 Loss 0.340680
    Time taken for 1 epoch 50.09799098968506 sec
    
    Epoch 17 Batch 0 Loss 0.3501
    Epoch 17 Batch 100 Loss 0.3355
    Epoch 17 Batch 200 Loss 0.3027
    Epoch 17 Batch 300 Loss 0.3440
    Epoch 17 Loss 0.318385
    Time taken for 1 epoch 49.605764865875244 sec
    
    Epoch 18 Batch 0 Loss 0.3254
    Epoch 18 Batch 100 Loss 0.3095
    Epoch 18 Batch 200 Loss 0.2968
    Epoch 18 Batch 300 Loss 0.2670
    Epoch 18 Loss 0.295994
    Time taken for 1 epoch 49.70194149017334 sec
    
    Epoch 19 Batch 0 Loss 0.3094
    Epoch 19 Batch 100 Loss 0.3093
    Epoch 19 Batch 200 Loss 0.2804
    Epoch 19 Batch 300 Loss 0.2976
    Epoch 19 Loss 0.278130
    Time taken for 1 epoch 49.86575794219971 sec
    
    Epoch 20 Batch 0 Loss 0.2911
    Epoch 20 Batch 100 Loss 0.2470
    Epoch 20 Batch 200 Loss 0.2651
    Epoch 20 Batch 300 Loss 0.2656
    Epoch 20 Loss 0.258760
    Time taken for 1 epoch 50.28017234802246 sec
    
    
    plt.plot(loss_plot)
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.title('Loss Plot')
    plt.show()
    
    png

    Caption!

    • The evaluate function is similar to the training loop, except you don't use teacher forcing here. The input to the decoder at each time step is its previous predictions along with the hidden state and the encoder output.
    • Stop predicting when the model predicts the end token.
    • And store the attention weights for every time step.
    def evaluate(image):
        attention_plot = np.zeros((max_length, attention_features_shape))
    
        hidden = decoder.reset_state(batch_size=1)
    
        temp_input = tf.expand_dims(load_image(image)[0], 0)
        img_tensor_val = image_features_extract_model(temp_input)
        img_tensor_val = tf.reshape(img_tensor_val, (img_tensor_val.shape[0], -1, img_tensor_val.shape[3]))
    
        features = encoder(img_tensor_val)
    
        dec_input = tf.expand_dims([tokenizer.word_index['<start>']], 0)
        result = []
    
        for i in range(max_length):
            predictions, hidden, attention_weights = decoder(dec_input, features, hidden)
    
            attention_plot[i] = tf.reshape(attention_weights, (-1, )).numpy()
    
            predicted_id = tf.argmax(predictions[0]).numpy()
            result.append(tokenizer.index_word[predicted_id])
    
            if tokenizer.index_word[predicted_id] == '<end>':
                return result, attention_plot
    
            dec_input = tf.expand_dims([predicted_id], 0)
    
        attention_plot = attention_plot[:len(result), :]
        return result, attention_plot
    def plot_attention(image, result, attention_plot):
        temp_image = np.array(Image.open(image))
    
        fig = plt.figure(figsize=(10, 10))
    
        len_result = len(result)
        for l in range(len_result):
            temp_att = np.resize(attention_plot[l], (8, 8))
            ax = fig.add_subplot(len_result//2, len_result//2, l+1)
            ax.set_title(result[l])
            img = ax.imshow(temp_image)
            ax.imshow(temp_att, cmap='gray', alpha=0.6, extent=img.get_extent())
    
        plt.tight_layout()
        plt.show()
    
    # captions on the validation set
    rid = np.random.randint(0, len(img_name_val))
    image = img_name_val[rid]
    real_caption = ' '.join([tokenizer.index_word[i] for i in cap_val[rid] if i not in [0]])
    result, attention_plot = evaluate(image)
    print ('Real Caption:', real_caption)
    print ('Prediction Caption:', ' '.join(result))
    plot_attention(image, result, attention_plot)
    # opening the image
    Image.open(img_name_val[rid])
    
    Real Caption: <start> a bike parked next to a bucket filled with lots of oranges <end>
    Prediction Caption: a man sitting in the banana <end>
    
    png
    png

    Try it on your own images

    For fun, below we've provided a method you can use to caption your own images with the model we've just trained. Keep in mind, it was trained on a relatively small amount of data, and your images may be different from the training data (so be prepared for weird results!)
    image_url = 'https://tensorflow.org/images/surf.jpg'
    image_extension = image_url[-4:]
    image_path = tf.keras.utils.get_file('image'+image_extension,
                                         origin=image_url)
    
    result, attention_plot = evaluate(image_path)
    print ('Prediction Caption:', ' '.join(result))
    plot_attention(image_path, result, attention_plot)
    # opening the image
    Image.open(image_path)
    
    Downloading data from https://tensorflow.org/images/surf.jpg
    65536/64400 [==============================] - 0s 2us/step
    Prediction Caption: a man on a surfboard riding a surfboard <end>
    
    png
    png


  • 0 comments:

    Post a Comment

    New Research

    Attention Mechanism Based Multi Feature Fusion Forest for Hyperspectral Image Classification.

    CBS-GAN: A Band Selection Based Generative Adversarial Net for Hyperspectral Sample Generation.

    Multi-feature Fusion based Deep Forest for Hyperspectral Image Classification.

    ADDRESS

    388 Lumo Rd, Hongshan, Wuhan, Hubei, China

    EMAIL

    contact-m.zamanb@yahoo.com
    mostofa.zaman@cug.edu.cn

    TELEPHONE

    #
    #

    MOBILE

    +8615527370302,
    +8807171546477