import tensorflow as tf Input = tf.placeholder('float',shape=[None, 2], name="Input") Target = tf.placeholder('float',shape=[None, 1], name="Target") inputBias = tf.Variable(initial_value=tf.random_normal(shape=[3], stddev=0.4), dtype='float', name="input_bias") weights = tf.Variable(initial_value=tf.random_normal(shape=[2,3], stddev=0.4), dtype='float', name="input_weights") hiddenBias = tf.Variable(initial_value=tf.random_normal(shape=[1], stddev=0.4), dtype='float', name="hidden_bias") outputWeights = tf.Variable(initial_value=tf.random_normal(shape=[3,1], stddev=0.4), dtype='float', name="output_weights") hiddenLayer = tf.matmul(Input, weights) + inputBias hiddenLayer = tf.sigmoid(hiddenLayer, name="hidden_layer_activation") output = tf.matmul(hiddenLayer, outputWeights) + hiddenBias hiddenLayer = tf.sigmoid(output, name="output_layer_activation")
#or output = tf.sigmoid(output, name="output_layer_activation") cost = tf.squared_difference(Target, output) cost = tf.reduce_mean(cost) optimizer = tf.train.AdamOptimizer().minimize(cost) inp = [[1, 1],[1, 0],[0, 1],[0, 0]] out = [[0],[1],[1],[0]] epochs= 4000
with tf.Session() as sess: tf.global_variables_initializer().run() for i in range(epochs): err, _ = sess.run([cost,optimizer],feed_dict={Input:inp, Target:out}) print(i,err)
0 comments:
Post a Comment