• Creating Optimizer and Training the Network

    import tensorflow as tf
    
    Input = tf.placeholder('float',shape=[None, 2], name="Input")
    Target = tf.placeholder('float',shape=[None, 1], name="Target")
    inputBias = tf.Variable(initial_value=tf.random_normal(shape=[3], stddev=0.4), dtype='float', name="input_bias")
    
    weights = tf.Variable(initial_value=tf.random_normal(shape=[2,3], stddev=0.4), dtype='float', name="input_weights")
    hiddenBias = tf.Variable(initial_value=tf.random_normal(shape=[1], stddev=0.4), dtype='float', name="hidden_bias")
    
    outputWeights = tf.Variable(initial_value=tf.random_normal(shape=[3,1], stddev=0.4), dtype='float',
                                name="output_weights")
    
    hiddenLayer = tf.matmul(Input, weights) + inputBias
    hiddenLayer = tf.sigmoid(hiddenLayer, name="hidden_layer_activation")
    
    output = tf.matmul(hiddenLayer, outputWeights) + hiddenBias
    hiddenLayer = tf.sigmoid(output, name="output_layer_activation")
    
    
    #or output = tf.sigmoid(output, name="output_layer_activation")
    
    
    cost = tf.squared_difference(Target, output)
    cost = tf.reduce_mean(cost)
    optimizer = tf.train.AdamOptimizer().minimize(cost)
    
    inp = [[1, 1],[1, 0],[0, 1],[0, 0]]
    out = [[0],[1],[1],[0]]
    epochs= 4000
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(epochs):
            err, _ = sess.run([cost,optimizer],feed_dict={Input:inp, Target:out})
            print(i,err)
  • 0 comments:

    Post a Comment

    New Research

    Attention Mechanism Based Multi Feature Fusion Forest for Hyperspectral Image Classification.

    CBS-GAN: A Band Selection Based Generative Adversarial Net for Hyperspectral Sample Generation.

    Multi-feature Fusion based Deep Forest for Hyperspectral Image Classification.

    ADDRESS

    388 Lumo Rd, Hongshan, Wuhan, Hubei, China

    EMAIL

    contact-m.zamanb@yahoo.com
    mostofa.zaman@cug.edu.cn

    TELEPHONE

    #
    #

    MOBILE

    +8615527370302,
    +8807171546477